

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

"Chemical Ligation" – A Versatile Method for Nucleoside Modification With Boron Clusters

Blazej A. Wojtczak,^[a] Agnieszka Andrysiak,^[a] Bohumir Gruner,^[b] and Zbigniew J. Lesnikowski^[a]*

[a] Institute of Medical Biology, Laboratory of Molecular Virology and Biological Chemistry, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland

[b] Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250-68 Rež, Czech Republic

UV/Vis (96% EtOH) spectrum of 10-(5-azido-3-oxa-pentoxy)-7,8-dikarba-*nido*undekaborane (2).

FT-IR (nujol) spectrum of 10-(5-azido-3-oxa-pentoxy)-7,8-dikarba-*nido*-undekaborane (2).

¹¹B {¹H BB} NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 10-(5-azido-3oxa-pentoxy)-7,8-dikarba-*nido*-undekaborane (2).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 10-(5-azido-3-oxapentoxy)-7,8-dikarba-*nido*-undekaborane (2).

¹H {¹¹B BB} NMR (acetone-*d6*, 250.131MHz, 25°C, TMS) spectrum of 10-(5-azido-3-oxapentoxy)-7,8-dikarba-*nido*-undekaborane (2).

¹H NMR (acetone-*d6*, 250.131MHz, 25°C, TMS) spectrum of 10-(5-azido-3-oxapentoxy)-7,8-dikarba-*nido*-undekaborane (2).

MS (Gly, FAB, -Ve): spectrum of 10-(5-azido-3-oxa-pentoxy)-7,8-dikarba-*nido*undekaborane (2), m/z (%):molecular formula: C₆H₁₉B₉N₃O₂; calculated average mass: 262.53, found 263.3 (100) [M+1H]⁻

UV/Vis spectrum (96% EtOH) of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide) (5).

FT-IR (nujol) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (5).

¹¹B {¹H BB} NMR (acetone-d6, 25°C, 80.25MHz, BF₃·Et₂O) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (5).

¹¹B NMR (acetone-d6, 25 °C, 80.25MHz, BF₃·Et₂O) spectrum of 8-(5-azido-3-oxapentoxy)-3-cobalt bis(1,2-dicarbollide) (5).

¹H {¹¹B BB} NMR (acetone-*d6*, 250.131MHz, 25°C, TMS) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (5).

¹H NMR (acetone-*d6*, 250.131 MHz, 25°C, TMS) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (5).

MS (Gly, FAB, -Ve) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (5); m/z (%):molecular formula: C₈H₂₉B₁₈CoN₃O₂, calculated average mass: 452.87, found 453.2 (100) [M]⁻

UV/Vis (96% EtOH) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-iron bis(1,2-dicarbollide) (6).

FT-IR (KBr) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-iron bis(1,2-dicarbollide) (6).

¹¹B {¹H BB} NMR (acetone-*d6*, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-iron bis(1,2-dicarbollide) (6).

¹¹B NMR (acetone-*d6*, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 8-(5-azido-3-oxapentoxy)-3-iron bis(1,2-dicarbollide) (6).

MS (Gly, FAB, -Ve) spectrum of 8-(5-azido-3-oxa-pentoxy)-3-iron bis(1,2-dicarbollide) (6). m/z (%): molecular formula: C₈H₂₉B₁₈FeN₃O₂, calculated average mass: 449.78, found 450.5 (100) [M+1H]

UV/Vis (96% EtOH) spectrum of 10-8-(5-propargyl-3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide) (7)

¹¹B {¹H BB} NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of -8-(5propargyl-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (7).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of -8-(5-propargyl-3-oxapentoxy)-3-cobalt bis(1,2-dicarbollide) (7).

¹H NMR (acetone-*d6*, 250.131MHz, 25°C, TMS) spectrum of 10-8-(5-propargyl-3-oxapentoxy)-3-cobalt bis(1,2-dicarbollide) (7).

MS (ESI) spectrum of 10-8-(5-propargyl-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (7), m/z (100): molecular formula: $C_{11}H_{32}B_{18}CoO_3$, calculated average mass: 465.90, found 467.0 (100) [M+1H]⁻

UV/Vis (96% EtOH) spectrum of 8-[5-(4-pentyn-1-yl)-3-oxa-pentoxy]-3-cobalt bis(1,2dicarbollide) (8).

FT-IR (KBr) spectrum of 8-[5-(4-pentyn-1-yl)-3-oxa-pentoxy]-3-cobalt bis(1,2dicarbollide) (8).

¹¹B {¹H BB} NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 8-[5-(4-pentyn-1-yl)-3-oxa-pentoxy]-3-cobalt bis(1,2-dicarbollide) (8).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 8-[5-(4-pentyn-1-yl)-3oxa-pentoxy]-3-cobalt bis(1,2-dicarbollide) (8).

¹H NMR (acetone-*d6*, 250.131MHz, 25°C, TMS) spectrum of 8-[5-(4-pentyn-1-yl)-3-oxapentoxy]-3-cobalt bis(1,2-dicarbollide) (8).

MS (Gly, FAB, -Ve) spectrum of 8-[5-(4-pentyn-1-yl)-3-oxa-pentoxy]-3-cobalt bis(1,2-dicarbollide) (8), m/z (%): molecular formula: $C_{13}H_{36}B_{18}CoO_3$, calculated average mass: 493.95, found 494.5 (100) [M+1H]⁻

 $\begin{array}{l} UV/Vis~(96\%~EtOH)~spectrum~of~8-[(5-thia-(3-thiolo-propan-1-yl)-3-oxa-pentoxy)-3-cobalt~bis(1,2-dicarbollide)~[(8-HS(CH_2)3S-(CH_2CH_2O)_2-1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11}-3,3'-C_0]Na~(9). \end{array}$

FT-IR (KBr) spectrum of 8-[(5-thia-(3-thiolo-propan-1-yl)-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) [(8-HS(CH₂)3S-(CH₂CH₂O)₂-1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁-3,3'-Co]Na (9).

 $\label{eq:2.1} {}^{1}\text{H NMR (D}_{2}\text{O}, 250.131\text{MHz}, 25^{\circ}\text{C}, \text{TMS}) \text{ spectrum of } 8-[(5-\text{thia-}(3-\text{thiolo-propan-1-yl})-3-\text{oxa-pentoxy})-3-\text{cobalt bis}(1,2-\text{dicarbollide}) \ [(8-\text{HS}(\text{CH}_{2})3\text{S-}(\text{CH}_{2}\text{CH}_{2}\text{O})_{2}-1,2-\text{C}_{2}\text{B}_{9}\text{H}_{10})(1^{\prime},2^{\prime}\text{-}\text{C}_{2}\text{B}_{9}\text{H}_{11}-3,3^{\prime}\text{-}\text{Co}]\text{Na (9).}$

 $\begin{array}{l} MS \ (FAB, \ Gly, \ -Ve) \ spectrum \ of \ 8-[(5-thia-(3-thiolo-propan-1-yl)-3-oxa-pentoxy)-3-cobalt \ bis(1,2-dicarbollide) \ [(8-HS(CH_2)3S-(CH_2CH_2O)_2-1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11}-3,3'-Co]Na \ (9), \ m/z \ (\%): \ molecular \ formula: C_{11}H_{36}B_{18}O_2S_2Co, \ calculated \ average \ mass: \ 518.06, \ found \ 518.1 \ (100) \ [M]^- \end{array}$

 $\label{eq:2.1} {}^{11}B \ \{ {}^{1}H \ BB \} \ NMR \ (acetone-d6, \ 25^{\circ}C, \ 80.253MHz, \ BF_3\cdot Et_2O) \ spectrum \ of \ -[(5-thia-(3-thiolo-propan-1-yl)-3-oxa-pentoxy)-3-cobalt \ bis(1,2-dicarbollide) \ [(8-HS(CH_2)3S-(CH_2CH_2O)_2-1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11}-3,3'-Co]Na \ (9), \ (CH_2CH_2O)_2-1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{11}-3,3'-Co]Na \ (9), \ (CH_2CH_2O)_2-1,2-C_2B_9H_{10})(1',2'-C_2B_9H_{$

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of -[(5-thia-(3-thiolo-propan-1-yl)-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) [(8-HS(CH₂)3S-(CH₂CH₂O)₂-1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁-3,3'-Co]Na (9),

UV/Vis (96% EtOH) spectrum of 3N-(4-pentyn-1-yl)thymidine (12).

FT-IR (KBr) spectrum of 3N-(4-pentyn-1-yl)thymidine (12).

¹H NMR (MeOD, 250.131MHz, 25°C, TMS) spectrum of 3*N*-(4-pentyn-1-yl)thymidine (12).

¹³C NMR (62.90 MHz, CD₃OH, 25°C, TMS) spectrum of 3*N*-(4-pentyn-1-yl)thymidine (12).

MS-ESI spectrum of 3*N*-(4-pentyn-1-yl)thymidine (12), molecular formula: C₁₅H₂₀N₂O₅; calculated average mass 308.33, found 331.0 (100) [M+Na]⁻

UV/Vis (96% EtOH) spectrum of 3*N*-[1-*para*-toluensulphonyl)-3-oxapentoxy)]thymidine (14).

MS-ESI spectrum of 3*N*-[1-*para*-toluensulphonyl)-3-oxa-pentoxy)]thymidine (14), m/z (%): molecular formula: C₂₁H₂₈N₂O₉S; calculated average mass:484.52, found 485.0 (10) [M+1H]⁻

¹H NMR (CDCl₃, 250.131MHz, 25°C, TMS) spectrum of 3*N*-[1-*para*-toluensulphonyl)-3-

oxa-pentoxy)]thymidine (14)

FT-IR (film) spectrum of 3N-[1-para-toluensulphonyl)-3-oxa-pentoxy)]thymidine (14).

UV/Vis (96% EtOH) spectrum of 3N-[5-azide-3-oxa-pentoxy)]thymidine (15).

FT-IR (film) spectrum of 3N-[5-azide-3-oxa-pentoxy)]thymidine (15).

¹H NMR (acetone-*d6*, 250.131MHz, 25°C, TMS) spectrum of 3*N*-[5-azide-3-oxa-pentoxy)]thymidine (15).

MS-ESI spectrum of 3N-[5-azide-3-oxa-pentoxy)]thymidine (15), m/z (%): molecular formula: C₁₄H₂₁N₅O₆ ,calculated average mass: 355.35, found 378.0 (100) [M+Na]⁻

UV/Vis (96% EtOH) spectrum of 2'-O-{[5-(7,8-dikarba-nido-undekaborane-10-yl)-3oxa-pentoxy]-1N-1,2,3-triazole-4-yl}methyluridine (17).

FT-IR (nujol) spectra of 2'-O-{[5-(7,8-dikarba-nido-undekaborane-10-yl)-3-oxapentoxy]-1N-1,2,3-triazole-4-yl}methyluridine (17).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 2'-*O*-{[5-(7,8-dikarba*nido*-undekaborane-10-yl)-3-oxa-pentoxy]-1*N*-1,2,3-triazole-4-yl}methyluridine (17).

 $^{11}B \{^{1}H BB\} NMR (acetone-d6, 25^{\circ}C, 80.253MHz, BF_{3} \cdot Et_{2}O) spectrum of 2'-O-\{[5-(7, 8-dikarba-nido-undekaborane-10-yl)-3-oxa-pentoxy]-1N-1, 2, 3-triazole-4-yl\} methyluridine for the second statement of the$

¹H NMR (CD₃OH, 250.131MHz, 25°C, TMS) spectrum of 2'-*O*-{[5-(7,8-dikarba-nidoundekaborane-10-yl)-3-oxa-pentoxy]-1*N*-1,2,3-triazole-4-yl}methyluridine (17).

MS (FAB, Gly, -Ve) spectrum of 2'-*O*-{[5-(7,8-dikarba-nido-undekaborane-10-yl)-3-oxapentoxy]-1*N*-1,2,3-triazole-4-yl}methyluridine (17),m/z (%): molecular formula: C₁₈H₃₁B₉N₅O₈, calculated average mass: 542.77, found 545.4 (100) [M+3H]⁻

UV/VIS (96% EtOH) spectrum of 2'-O-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (18).

FT-IR (film) spectra of 2'-O-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (18).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 2'-*O*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}methyluridine (18).

¹¹B {¹H BB} NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 2'-O-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (18).

¹H NMR (CD₃OH, 250.131MHz, 25°C, TMS) spectrum of 2'-*O*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}methyluridine (18).

MS (FAB, Gly, -Ve) spectrum of 2'-O-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (18), m/z (%): molecular formula: C₂₀H₄₃B₁₈CoN₅O₈, calculated average mass: 735.11, fund 735.5 (36) [M]⁻

UV/Vis (96% EtOH) spectrum of 2'-O-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (19).

FT-IR (KBr) spectrum of 2'-O-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (19).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 2'-*O*-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}methyluridine (19).

MS (FAB, Gly, -Ve) spectrum of 2'-O-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (19), m/z (%): molecular formula: $C_{20}H_{43}B_{18}FeN_5O_8$, calculated average mass: 732.03, found 732.6 (100) [M]⁻

UV/Vis (96% EtOH) spectrum of 3-*N*-{[5-(7,8-dikarba-*nido*-undekaborane-10-yl)-3-oxapentoxy]-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20).

FT-IR (KBr) spectrum of 3-*N*-{[5-(7,8-dikarba-*nido*-undekaborane-10-yl)-3-oxapentoxy]-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-N-{[5-(7,8-dikarbanido-undekaborane-10-yl)-3-oxa-pentoxy]-1N-1,2,3-triazole-4-yl}(4-propan-1yl)thymidine (20).

¹¹B {¹H BB} NMR (acetone-d6?, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-*N*-{[5-(7,8-dikarba-*nido*-undekaborane-10-yl)-3-oxa-pentoxy]-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20).

¹H NMR (CD₃OH, 250.131MHz, 25°C, TMS) spectrum of 3-*N*-{[5-(7,8-dikarba-*nido*undekaborane-10-yl)-3-oxa-pentoxy]-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20).

MS-ESI spectrum of 3-*N*-{[5-(7,8-dikarba-*nido*-undekaborane-10-yl)-3-oxa-pentoxy]-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20), m/z (%): molecular formula: C₂₁H₃₈B₉N₅O₇, calculated average mass: 569.85, found 572.0 (100) [M+2H]⁻

UV/Vis (96% EtOH) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21).

FT-IR (KBr) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21).

¹¹B {¹H BB} NMR (acetone-d6?, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21).

¹H NMR (CD₃OH, 250.131MHz, 25°C, TMS) spectrum of $3-N-\{\{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy\}-1N-1,2,3-triazole-4-yl\}(4-propan-1-yl)thymidine (21).$

¹³C NMR (62.90 MHz, CD₃OH, 25°C, TMS) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21).

250 MHz ¹H-¹³C correlation (CD₃OH) spectrum (HMQC) of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21).

250 MHz ¹H-¹³C Heteronuclear Multiple Bond Correlation (HMBC) (CD₃OH) experiments for analysis of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21). Observable on the HMBC spectrum two connectivities, C-2/**a**-H and C-4/**a** -H, allow assignment of the alkylation site in thymine nucleobase to 3N.

MS-ESI spectrum of of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21), m/z (%): molecular formula: $C_{23}H_{49}B_{18}CoN_5O_7$, calculated average mass: 761.20, found 762.0 (100) [M+1H]⁻

UV/Vis (96% EtOH) spectrum of 3-*N*-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (22).

FT-IR (KBr) spectrum of 3-*N*-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (22).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-*N*-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (22).

$$\label{eq:msectrum} \begin{split} MS\text{-}ESI \ spectrum \ of \ 3-N-\{\{5-[3-iron \ bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy\}-1N-1,2,3-triazole-4-yl\}(4-propan-1-yl)thymidine \ (22). \ m/z \ (\%): \ molecular \ formula: \\ C_{23}H_{49}B_{18}FeN_5O_7, \ calculated \ average \ mass: \ 758.11, \ found \ 759.0 \ (100) \ [M+1H]^- \end{split}$$

UV/Vis (96% EtOH) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}methyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (23).

FT-IR (KBr) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}methyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (23).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}methyl-(4-1,2,3-triazole-1N-yl}} (1-ethoxyethan-4-yl)thymidine (23).

 ^{11}B {¹H BB} NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}methyl-(4-1,2,3-triazole-1N-yl}} (1-ethoxyethan-4-yl)thymidine (23).

¹H NMR {¹¹B BB} (CD₃OH, 250.131MHz, 25°C, TMS) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}methyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (23).

MS-ESI spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}methyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (23), m/z (%): molecular formula: C₂₅H₅₃B₁₈CoN₅O₉, calculated average mass: 821.25, found 822.0 (90) [M+1H]⁻

UV/Vis (96% EtOH) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}propyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (24).

¹¹B NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}propyl-(4-1,2,3-triazole-1N-yl}} (1-ethoxyethan-4-yl)thymidine (24).

 ^{11}B {¹H BB} NMR (acetone-d6, 25°C, 80.253MHz, BF₃·Et₂O) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}propyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (24).

¹H NMR {¹¹B BB} (CD₃OH, 250.131MHz, 25°C, TMS) spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}propyl-(4-1,2,3-triazole-1*N*-yl}} (1-ethoxyethan-4-yl)thymidine (24).

 $\label{eq:MS-ESI spectrum of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}propyl-(4-1,2,3-triazole-1N-yl} (1-ethoxyethan-4-yl)thymidine (24), m/z (%): molecular formula: C_{27}H_{57}B_{18}CoN_5O_9, calculated average mass: 849.30, found 850.0 (100) [M+1H]^-$

Comparison of high resolution experimental spectra with simulated spectra within the range of molecular ion m/z.

Simulated spectrum of the molecular ion of 10-(5-azido-3-oxa-pentoxy)-7,8-dikarbanido-undekaborane (2), calculated exact mass for C₆H₁₉B₉N₃O₂: 264.23

Fragment of the MS ESI spectrum of 10-(5-azido-3-oxa-pentoxy)-7,8-dikarba-*nido*undekaborane (2) corresponding to molecular ion range, m/z (%): 263.26 (100%), 264.18 (42%), calculated exact mass for C₆H₁₉B₉N₃O₂: 264.23

Simulated spectrum of the molecular ion of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide) (5), calculated exact mass for C₈H₂₉B₁₈CoN₃O₂: 456.33

Fragment of the MS ESI spectrum of 8-(5-azido-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (5) corresponding to molecular ion range, m/z (%): 453.46 (100%), 456.32 (5%), calculated exact mass for $C_8H_{29}B_{18}CoN_3O_2$: 456.33

Simulated spectrum of the molecular ion of 8-(5-azido-3-oxa-pentoxy)-3-iron bis(1,2dicarbollide) (6), calculated exact mass for C₈H₂₉B₁₈FeN₃O₂: 453.33

Fragment of the MS ESI spectrum of 8-(5-azido-3-oxa-pentoxy)-3-iron bis(1,2-dicarbollide) (6) corresponding to molecular ion range, m/z (%): 450.44 (100%), 453.28 (2%), calculated exact mass for $C_8H_{29}B_{18}FeN_3O_2$: 453.33

Simulated spectrum of the molecular ion of 10-8-(5-propargyl-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) (7), calculated exact mass for C₁₁H₃₂B₁₈CoO₃: 469.34

Fragment of the MS ESI spectrum of 10-8-(5-propargyl-3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide) (7) corresponding to molecular ion range, m/z (%): 466.50 (100%), 469.36 (5%), calculated exact mass for C₁₁H₃₂B₁₈CoO₃: 469.34

Simulated spectrum of the molecular ion of 8-[5-(4-pentyn-1-yl)-3-oxa-pentoxy]-3- cobalt bis(1,2-dicarbollide) (8), calculated exact mass for $C_{13}H_{36}B_{18}CoO_3$: 497.37

Fragment of the MS ESI spectrum of 8-[5-(4-pentyn-1-yl)-3-oxa-pentoxy]-3-cobalt bis(1,2-dicarbollide) (8), corresponding to molecular ion range, m/z (%): 495.48 (100%), 497.40 (6%), calculated exact mass for $C_{13}H_{36}B_{18}CoO_3$: 497.37

Simulated spectrum of the molecular ion of 8-[(5-thia-(3-thiolo-propan-1-yl)-3-oxapentoxy)-3-cobalt bis(1,2-dicarbollide) [(8-HS(CH₂)3S-(CH₂CH₂O)₂-1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁-3,3'-Co]Na (9), calculated exact mass for C₁₁H₃₆B₁₈O₂S₂Co: 521.32

Fragment of the MS ESI spectrum of 8-[(5-thia-(3-thiolo-propan-1-yl)-3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide) [(8-HS(CH₂)3S-(CH₂CH₂O)₂-1,2-C₂B₉H₁₀)(1',2'-C₂B₉H₁₁-3,3'-Co]Na (9) corresponding to molecular ion range, m/z (%): 519.42 (100%), 521.36 (10%), calculated exact mass for $C_{11}H_{36}B_{18}O_2S_2Co: 521.32$

Simulated spectrum of the molecular ion of 3N-(4-pentyn-1-yl)thymidine (12), calculated exact mass for $C_{15}H_{20}N_2O_5$: 308.14

 $\label{eq:starsest} \begin{array}{l} Fragment of the MS-APCI spectrum of 3N-(4-pentyn-1-yl)thymidine (12), \\ corresponding to molecular ion range, m/z (\%):308.96 (100\%), 309.92 (15\%), \ calculated \\ exact mass for $C_{15}H_{20}N_2O_5$: 308.14$ \end{array}$

00-1		48	4.67		
90-					
80-	3	98.75			
70-					
60-		1.			
50-			Č		
40-					
30-					
20-					
10			breasans		

Simulated spectrum of the molecular ion of 3*N*-[1-*para*-toluensulphonyl)-3-oxapentoxy)]thymidine (14), calculated exact mass for C₂₁H₂₈N₂O₉S : 484.15

Fragment of the MS-APCI spectrum of 3*N*-[1-*para*-toluensulphonyl)-3-oxapentoxy)]thymidine (14) corresponding to molecular ion range, m/z (%): 484.94 (100%), 485.86 (22%), 486.86 (6%), calculated exact mass for C₂₁H₂₈N₂O₉S: 484.15

			355.67		<u>8</u>						
00	3	39.75									
90-		1									
80-											
70											
30-											
50-											
40-											
30-		1									
20-											
10-	153,08	. t									
10-	153.08										

Fragment of the MS-APCI spectrum of 3N-[5-azide-3-oxa-pentoxy)]thymidine (15) corresponding to molecular ion range, m/z (%): 355.90 (100%), calculated exact mass for $C_{14}H_{21}N_5O_6$: 355.15

Simulated spectrum of the molecular ion of 2'-O-{[5-(7,8-dikarba-nido-undekaborane-10-yl)-3-oxa-pentoxy]-1N-1,2,3-triazole-4-yl}methyluridine (17), calculated exact mass for C₁₈H₃₁B₉N₅O₈ : 544.30

Fragment of the MS ESI spectrum of 2'-O-{[5-(7,8-dikarba-nido-undekaborane-10-yl)-3-oxa-pentoxy]-1N-1,2,3-triazole-4-yl}methyluridine (17), corresponding to molecular ion range, m/z (%): 545.42 (100%), 547.34 (5%), calculated exact mass for $C_{18}H_{31}B_9N_5O_8$: 544.30

Simulated spectrum of the molecular ion of 2'-O-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (18), calculated exact mass for $C_{20}H_{43}B_{18}CoN_5O_8:738.41$

 $\label{eq:starsest} \begin{array}{l} Fragment of the MS ESI spectrum of 2'-O-\{\{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy\}-1N-1,2,3-triazole-4-yl\}methyluridine (18) corresponding to molecular ion range, m/z (\%):736.46 (100%), 738.38 (12%), calculated exact mass for $$C_{20}H_{43}B_{18}CoN_5O_8: 738.41$ \end{array}$

Fragment of the MS ESI spectrum of 2'-O-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1N-1,2,3-triazole-4-yl}methyluridine (19), corresponding to molecular ion range, m/z (%):733.44 (100%), 735.40 (12%), calculated exact mass for $C_{20}H_{43}B_{18}FeN_5O_8$: 735.41

Simulated spectrum of the molecular ion of 3-N-{[5-(7,8-dikarba-*nido*-undekaborane-10-yl)-3-oxa-pentoxy]-1N-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20), calculated exact mass for $C_{21}H_{38}B_9N_5O_7$: 571.36

Fragment of the MS ESI spectrum of 3-*N*-{[5-(7,8-dikarba-*nido*-undekaborane-10-yl)-3oxa-pentoxy]-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (20) corresponding to molecular ion range, m/z [M+2H]⁻: 571.46 (100%), 573.36 (5%), calculated exact mass for C₂₁H₃₈B₉N₅O₇: 571.36

 $\label{eq:simulated spectrum of the molecular ion of 3-N-\{\{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy\}-1N-1,2,3-triazole-4-yl\}(4-propan-1-yl)thymidine (21), calculated exact mass for C_{23}H_{49}B_{18}CoN_5O_7:764.46$

Fragment of the MS ESI spectrum of 3-*N*-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (21), corresponding to molecular ion range, m/z (%):761.56 (100%), 764.58 (7%), calculated exact mass for C₂₃H₄₉B₁₈CoN₅O₇: 764.46

Simulated spectrum of the molecular ion of 3-*N*-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3oxa-pentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (22), calculated exact mass for C₂₃H₄₉B₁₈FeN₅O₇: 761.47

Fragment of the MS ESI spectrum of 3-*N*-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}-1*N*-1,2,3-triazole-4-yl}(4-propan-1-yl)thymidine (22) corresponding to molecular ion range, m/z (%):759.50 (100%), 761.44 (12%), calculated exact mass for C₂₃H₄₉B₁₈FeN₅O₇: 761.47

Simulated spectrum of the molecular ion of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}methyl-(4-1,2,3-triazole-1N-yl}} (1-ethoxyethan-4-yl)thymidine (23), calculated exact mass for $C_{25}H_{53}B_{18}CoN_5O_9$: 824.49

Fragment of the MS ESI spectrum of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxapentoxy}methyl-(4-1,2,3-triazole-1N-yl}} (1-ethoxyethan-4-yl)thymidine (23), corresponding to molecular ion range, m/z (%): 821.52 (100%), 824.38 (10%) calculated exact mass for C₂₅H₅₃B₁₈CoN₅O₉: 824.49

Simulated spectrum of the molecular ion of 3-N-{{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}propyl-(4-1,2,3-triazole-1N-yl}} (1-ethoxyethan-4-yl)thymidine (24), calculated exact mass for $C_{27}H_{57}B_{18}CoN_5O_9$: 852.52

 $\label{eq:starsest} Fragment of the MS ESI spectrum of 3-N-\{\{5-[3-cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy\}propyl-(4-1,2,3-triazole-1N-yl\}\} (1-ethoxyethan-4-yl)thymidine (24) corresponding to molecular ion range, m/z (%): 850.48 (100%), 852.38 (12%), calculated exact mass for C_{27}H_{57}B_{18}CoN_5O_9: 852.52$